Lec7: Combinatorial Chemistry: Introduction

Introduction:

•Combinatorial Chemistry is a new method developed by academics and researchers to reduce the time and cost of producing effective, marketable and competitive new drugs.

Introduction:

•Scientists use Combinatorial Chemistry to create large numbers of molecules that can be detected efficiently.

Introduction:

•This technique has captured the attention of many areas such as Pharmaceutical chemistry, Biotechnology and Agrochemistry.

•Combinatorial chemistry is a technique by which large numbers of different but structurally similar molecules are produced rapidly and submitted for

pharmacological assay.

Definition:

- •This technique uses the same reaction conditions with the same reaction vessels to produce a large range of analogues.
- •Technique invented in the late 1980s and early
- 1990s to enable tasks to be applied to many molecules simultaneously

Example:

For instance, let's assume that we have two alcohols named A and
 B. These alcohols are utilized to form esters by the reaction with three carboxylic acids named A, B, and C.

- So, the expected products would be (2*3 = 6) as follows:
 1.
 - 2. A-B 3. A-C
 - 4. **B**-A
 - 5. **B-B** 6. **B-C**

What if you have 5 alcohols and 6 carboxylic acids?

STRATEGIES

Applications:

1. Applications of combinatorial chemistry are very wide. Scientists use combinatorial chemistry to create large populations of molecules that can be screened efficiently.

Applications:

2. By producing larger, more diverse compound libraries, companies increase the probability that they will find novel compounds of significant therapeutic and commercial value.

Applications:

3. Provides a stimulus for robot-controlled and immobilization strategies that allow highthroughput and multiple parallel approaches

to drug discovery

Advantages:

A. Fast:

Combinatorial approach can give rise to

million of compound in same time as it will

take to produce one compound by traditional

method of synthesis.

B. Economical:

A negative result of mixture saves the effort

of synthesis, purification & identification of

each compound

C. Easy:

Isolation purification & identification of

active molecule from combinatorial library

is relatively easy.

Advantages:

D. Drug Discovery:

- Mixed Combinatorial synthesis produces chemical
- pool. Probability of finding a molecule in a random
- screening process is *proportional* to the number of
- molecules subjected to the screening process.

E. Drug Optimization:

Parallel synthesis produces analogues with

slight differences which is required for lead

optimization

Disadvantages:

1. Efficiency is highly affected by compound's

size, solubility and function group.

 Compounds produced tend to be Achiral of Racemic.

Combinatorial Chemistry within drug design

Impact at lead discovery:

A. Traditionally lead drugs were found from:

- i. Natural products.
- ii. Synthetic custom crafted organicmolecules made in smallnumbers.
- iii. Analogues of known actives (analogue me-toos)

Me-too drug: A drug that is structurally very similar to already known drugs, with only minor differences.

Combinatorial Chemistry within drug design

B. High Throughput screening (HTS) requires large numbers of compounds to fuel the discovery process

C. As an alternative to traditional synthesis many compounds rapidly constructed was needed.

References:

Y Wilson and Gisvold Textbook of Organic Medicinal and Pharmaceutical Chemistry; Delgado

JN, Remers WA, (Eds.); 12th ed., 2011.

YAn introduction to Medicinal chemistry,3rdedition, Graham L.Patric