

Ministry of Higher Education and Scientific Research

Al-Muthanna University

Organic chemistry

For the 1st year students of the «faculty of Pharmacy»

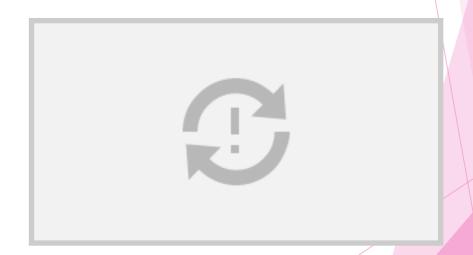
Lecture (6) Dienes Hydrocarbones

Dr. Rusul Alabada

Diene hydrocarbons

Alkadienes are characterized by the presence of two double bonds. Depending on their relative position, they are divided into the following types:

a) IsolaWhehidowble bonds are separated by at least two single bond, isolated diene


b) Conjugated dienes

 When double bonds are separated by only one single bond, conjugated diene

c) cumulated diene

 When both sets of double bonds emanate from the same carbon, cumulated diene

$$CH_3$$
 CH_3 CH_2OH CH_3 CH_3

Vitamin A

beta-carotene

Stability of alkadienes:

- (<u>Cumulated</u> dienes are not stable and are rare)
- <u>Isolated</u> dienes are not stable ,they are undergo addition reactions with one or two moles...
- ► ☆ Conjugated dienes :
- 1) They are more stable.
- 2) They are the preferred products of substitutions.
- 3) They give 1,2- + 1,4-addition products

Chemical reactions of isolated dienes

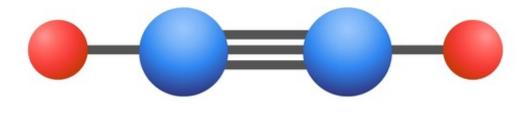
<u>isolated</u> dienes:) addition reactions(

- ightharpoonup CH₂=CHCH₂CH₂CH=CH₂ + H₂, Ni \Box CH₃CH₂CH₂CH=CH₂
- ► CH₂=CHCH₂CH₂CH=CH₂ + 2 H₂, Ni □ CH₃CH₂CH₂CH₂CH₂CH₃
- ► CH₂=CHCH₂CH₂CH=CH₂ + HBr □ CH₃CHCH₂CH₂CH=CH₂ Br
- ► CH₂=CHCH₂CH₂CH=CH₂ + 2 HBr □ CH₃CHCH₂CH₂CHCH₃ Br Br

Chemical reactions of conjugated dienes

Methods of preparation (1) *From acetylene*:

(2) Dehydrohalogenation of dihalides:

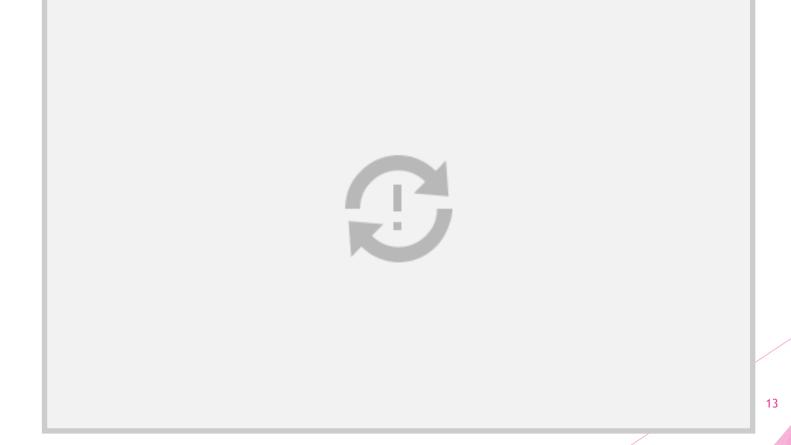

(3) Dehydration of alcohols:

(4) Dehydrogenation of alkanes:

$$CH_3CH_2CH_2CH_3 \xrightarrow{\text{Catalyst}} CH_2 = CH - CH = CH_2$$
n-Butane

 $CH_3CH_2CH_3 \xrightarrow{\text{Catalyst}} CH_2 = CH - CH = CH_2$

ALKYNE


 C_nH_{2n-2}

C: Carbon

H : Hydrogen

ALKYNES

Alkynes (c_nH_{2n-2} chain carbon atoms are in the states sp and sp³-hybridization within the molecule contains one triple bond).

Alkynes can be described as terminal or

internal.

Reactions, alkynes:

- 1. addition of H₂ (reduction)
- 2. addition of X_2
- 3. addition of HX
- 4. addition of H₂O, H⁺
- 5. as acids
- 6. Ag⁺
- 7. oxidation

1. Addition of H₂ (reduction)

2. Addition of X_2

3. Addition of hydrogen halides:

- a) HX = HI, HBr, HCl
- b) Markovnikov rule

$$CH_{3}C \equiv CH \xrightarrow{HBr} CH_{3}C = CH_{2} \xrightarrow{HBr} CH_{3}CCH_{3}$$

Propyne

2-Bromopropene

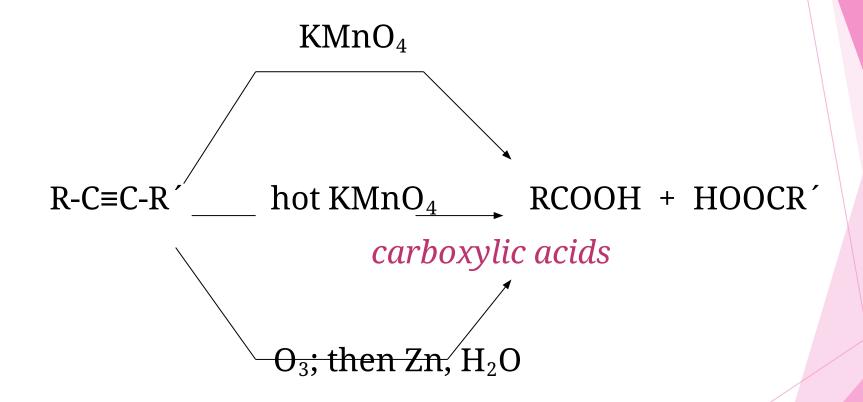
2,2-Dibromopropane

CH₃C
$$\equiv$$
CH + H₂O $\xrightarrow{\text{H}_2\text{SO}_4}$ CH₃C $=$ CH₂CH₂ $\xrightarrow{\text{CH}_3\text{CCH}_3}$ Propene Propened (Acetone)

5. As acids: (Terminal alkynes only!)

with active metals:

$$CH_3C \equiv CH + Na \square CH_3C \equiv C^-Na^+ + \frac{1}{2}H_2\square$$


5. Ag⁺ (Terminal alkynes only!)

$$CH_3CH_2C\equiv CH + AgNO_3 \square CH_3CH_2C\equiv C^-Ag^+\square$$

$$CH_3C \equiv CCH_3 + AgNO_3 \square N.R$$
 (not terminal)

formation of a precipitate is a test for terminal alkynes.

7. Oxidation

$$CH_3CH_2C \equiv CCH_3 + Cold KMnO_4 \square CH_3CH_2COOH + HOOCCH_3$$

$$CH_3C \equiv CH + hot KMnO_4 \square CH_3COOH + CO_2$$

$$CH_3C \equiv CCH_3 + O_3$$
; then Zn, $H_2O \square$ 2 CH_3COOH

Methods of preparation

2
$$CH_4$$
 Steam CH_4 CH_4 CH_2 CH_4 CH_4 CH_2 CH_4 CH_4

(3) Dehydrohalogenation of dihalides:

