Carboxylic acids and Their Derivatives

Examples

CH3CH2CH2CH(CH3)CH2COOH Parent compound = 6 carbons, hexane Drop -e and add -oic acid <u>hexanoic acid</u> Carboxylic carbon is #1 Name remaining substituents <u>3-methylhexanoic acid</u>

TABLE 10.1 ALIPHATIC CARBOXYLIC ACIDS

Carbon atoms	Formula	Source	Common name	IUPAC name
1	НСООН	ants (Latin, formica)	formic acid	methanoic acid
2	CH₃COOH	vinegar (Latin, acetum)	acetic acid	ethanoic acid
3	CH ₃ CH ₂ COOH	milk (Greek, <i>protos pion</i> , first fat)	propionic acid	propanoic acid
4	CH3(CH2)2C00H	butter (Latin, <i>butyrum</i>)	butyric acid	butanoic acid
5	CH ₃ (CH ₂) ₃ COOH	valerian root (Latin, <i>valere</i> , to be strong)	valeric acid	pentanoic acid
6	CH ₃ (CH ₂) ₄ COOH	goats (Latin, <i>caper</i>)	caproic acid	hexanoic acid
7	CH ₃ (CH ₂) ₅ COOH	vine blossom (Greek, <i>oenanthe</i>)	enanthic acid	heptanoic acid
8	CH ₃ (CH ₂) ₆ COOH	goats (Latin, <i>caper</i>)	caprylic acid	octanoic acid
9	CH ₃ (CH ₂)7COOH	pelargonium (an herb with stork-shaped seed capsules; Greek, <i>pelargos</i> , stork)	pelargonic acid	nonanoic acid
10	CH ₃ (CH ₂) ₈ COOH	goats (Latin, <i>caper</i>)	capric acid	decanoic acid

The carboxyl group has priority over alcohol, aldehyde, or ketone functionality in naming. In the latter cases, the prefix *oxo*- is used to locate the carbonyl group of the aldehyde or ketone, as in these examples:

$$\begin{array}{cccc}
O & O & O \\
HC - CH_2CO_2H & 5 & \| & 3 & 2 & 1 \\
BC - CH_2CO_2H & CH_3CCH_2CHCO_2H & 4 & | \\
3-oxopropanoic acid & 2-bromo-4-oxopentanoic acid \\
\end{array}$$

cis-1,3-cyclofiexanedicarboxylic acid

When the carboxyl group is attached to a ring, the ending *-carboxylic acid* is added to the name of the parent cycloalkane.

cyclopentanecarboxylic acid

trans-3-chlorocyclobutanecarboxylic acid

Aromatic acids are named by attaching the suffix -oic acid or -ic acid to an appropriate prefix derived from the aromatic hydrocarbon.

Diacids

1

TABLE 10.2 ALIPHATIC DICARBOXYLIC ACIDS

Formula	Common name	Source	IUPAC name
НООС СООН	oxalic acid	plants of the <i>oxalic</i> family (for example, sorrel)	ethanedioic acid
H00C-CH2-C00H	malonic acid	apple (Gk. <i>malon</i>)	propanedioic acid
H00C-(CH ₂)2-C00H	succinic acid	amber (L. <i>succinum</i>)	butanedioic acid
H00C-(CH ₂)3-C00H	glutaric acid	gluten	pentanedioic acid
H00C-(CH2)4-C00H	adipic acid	fat (L. <i>adeps</i>)	hexanedioic acid
H00C-(CH ₂) ₅ - C00H	pimelic acid	fat (Gk. <i>pimele</i>)	heptanedioic acid

Aliphatic dicarboxylic acids are given the suffix *dioic acid* in the IUPAC system. For example,

$$HO_2C - CH_2CH_2 - CO_2H = HO_2C - C - CO_2H$$

butanedioic acid butynedioic acid

Many dicarboxylic acids occur in nature and go by their common names, which are based on their source. Table 10.2 lists some common aliphatic diacids.⁸ The most important commercial compound in this group is adipic acid, used to manufacture nylon.

The two butenedioic acids played a historic role in the discovery of *cis-trans* isomerism and are usually known by their common names maleic^{**} and fumaric^{***} acid.

Physical Properties of carboxylic acids

$R = \begin{pmatrix} 0 - H - 0 \\ 0 - H - 0 \end{pmatrix} C - R$

(lower acids)

Hydrogen bonding

Solubility in water

TABLE 10.3 PHYSICAL PROPERTIES OF SOME CARBOXYLIC ACIDS

Name	bp, °C	mp, °C	Solubility, g/100 g H ₂ 0 at 25°C
formic acid	101	8]	
acetic acid	118	17 [missible (m)
propanoic acid	141	-22	
butanoic acid	164	-8]	
hexanoic acid	205	-1.5	1.0
octanoic acid	240	17	0.06
decanoic acid	270	31	0.01
benzoic acid	249	122	0.4 (but 6.8 at 95°C)

Acidity of carboxylic acids

10.3 Acidity and Acidity Constants

Carboxylic acids dissociate in water, yielding a carboxylate anion and a hydronium ion.

 $pK_a = -log K_a$ As K_a increase or pK_a decrease, the acidity increase

Name	Formula	Ka	pK _a
formic acid	НСООН	2.1×10^{-4}	3.68
acetic acid	CH3C00H	$1.8 imes 10^{-5}$	4.74
propanoic acid	CH ₃ CH ₂ COOH	1.4×10^{-5}	4.85
butanoic acid	CH ₃ CH ₂ CH ₂ COOH	$1.6 imes 10^{-5}$	4.80
chloroacetic acid	CICH2C00H	$1.5 imes 10^{-3}$	2.82
dichloroacetic acid	Cl ₂ CHCOOH	$5.0 imes 10^{-2}$	1.30
trichloroacetic acid	CCI ₃ COOH	$2.0 imes 10^{-1}$	0.70
2-chlorobutanoic acid	CH ₃ CH ₂ CHCIC00H	1.4×10^{-3}	2.85
3-chlorobutanoic acid	CH ₃ CHCICH ₂ COOH	$8.9 imes 10^{-5}$	4.05
benzoic acid	C ₆ H ₅ COOH	6.6×10^{-5}	4.18
o-chlorobenzoic acid	o-CI-C ₆ H ₄ COOH	$12.5 imes 10^{-4}$	2.90
<i>m</i> -chlorobenzoic acid	<i>m</i> -CI C ₆ H ₄ COOH	$1.6 imes 10^{-4}$	3.80
p-chlorobenzoic acid	p-CI—C₀H₄COOH	1.0×10^{-4}	4.00
<i>p</i> -nitrobenzoic acid	<i>p</i> -NO ₂ C ₆ H ₄ COOH	4.0×10^{-4}	3.40
phenol	C ₆ H₅O <mark>H</mark>	1.0×10^{-10}	10.00
ethanol	CH ₃ CH ₂ OH	$1.0 imes 10^{-16}$	16.00
water	НОН	1.8×10^{-16}	15.74

TABLE 10.4 THE IONIZATION CONSTANTS OF SOME ACIDS

Resonance and Inductive effect

Conversion of acids to salts

Carboxylic acids, when treated with a strong base, form carboxylate salts. For example,

The salt can be isolated by evaporating the water. As we will see in Chapter 15, carboxylate salts of certain acids are useful as soaps and detergents.

Carboxylate salts are named as shown in the following examples:

Preparation of carboxylic acids

From Alkenes

Oxidative cleavage of an alkene with KMnO₄ gives a carboxylic acid if the alkene has at least one vinylic hydrogen (see Section 7.8)

20.6 Preparation of Carboxylic Acids

- Oxidation of a substituted alkylbenzene with KMnO₄ or Na₂Cr₂O₇ gives a substituted benzoic acid (see Section 16.10)
- 1° and 2° alkyl groups can be oxidized, but tertiary groups are not

$$O_2N \longrightarrow CH_3 \xrightarrow{KMnO_4} O_2N \longrightarrow O_2N \longrightarrow O_2N \longrightarrow O_2N$$

p-Nitrotoluene

p-Nitrobenzoic acid (88%)

Carboxylation of Grignard Reagents

- Grignard reagents react with dry CO₂ to yield a metal carboxylate
- Limited to alkyl halides that can form Grignard reagents (see 17.6)

Mechanism of Grignard Carboxylation

- The organomagnesium halide adds to C=O of carbon dioxide
- Protonation by addition of aqueous HCI in a separate step gives the free carboxylic acid

Hydrolysis of Nitriles

- Hot acid or base yields carboxylic acids
- Conversion of an alkyl halide to a nitrile (with cyanide ion) followed by hydrolysis produces a carboxylic acid with one more carbon (RBr → RC=N → RCO₂H)
- Best with primary halides because elimination reactions occur with secondary or tertiary alkyl halides

$$\underset{\text{S2004 ThomservBrooks Cole}{\text{Cole}}{\overset{\text{Na^+ -CN}}{\xrightarrow{(S_N2)}}} RCH_2C \Longrightarrow \overset{\text{O}}{\xrightarrow{H_3O^+}} RCH_2COH + NH_3$$

From Alcohols

 Oxidation of a primary alcohol or an aldehyde with CrO₃ in aqueous acid

Based on McMurry, Organic Chemistry, Chapter 20, 6th edition (c) 2003

Reactions of carboxylic acids

Esters

Nomenclature

10.9 Esters

Esters are derived from acids by replacing the —OH group by an —OR group. They are named in a manner analogous to carboxylic acid salts. The R part of the —OR group is named first, followed by the name of the acid, with the *-ic* ending changed to *-ate*.

Notice the different names of the following pair of isomeric esters, where the R and R' groups are interchanged.

phenyl acetate bp 195.7°C

-OCH3

methyl benzoate bp 196.6°C

Smelly stuff

снзснзснзсоснз methybutanoate <u>Apples</u>

сн_зсн₂сн₂созсн₃ methythiobutanoate <u>Strawberries</u>

снзсн2сн2сосн2сн3

ethybutanoate Pineapples снзсн2сн2со(сн2)4сн3

pentylbutanoate Apricots

Lactones (Cyclic Esters)

10.12 Lactones

Hydroxy acids contain both functional groups required for ester formation. If these groups can come in contact through bending of the chain, they may react with one another to form cyclic esters called lactones. For example,

Most common lactones have five- or six-membered rings, although lactones with smaller or larger rings are known. Two examples of six-membered lactones from nature are coumarin, which is responsible for the pleasant odor of newly mown hay, and **nepetalactone**, the compound in catnip that excites cats. **Erythromycin**, widely used as an antibiotic, is an example of a macrocyclic lactone.^{*}

Reactions of Esters with Grignard Reagent

Formation of Amides (Ammonolysis of Esters)

Reduction of Esters

Esters can be reduced to primary alcohols

The Cliasen Condensation

Acid Halides

They are prepared from the reaction of acids with thionyl chloride or phosphorus halides

Properties

Derivatives

Acid chlorides Noxious, irritating, slightly polar React violently with water

Esters

Slightly polar, pleasant odor Low MW species are water soluble

Acid anhydrides

Not as polar as acids May decompose in water

Reactions of acid chlorides

Acid chlorides react rapidly with most nucleophiles such as water, alcohols and ammoniaAcyl halides have irritating odors. Benzoyl chlorid is a lachrymator (tear gas)

Reaction with Grignard Reagent

that acyl halides also react with Grignard reagents to give tertiary alcohols. The first steps involve ketone formation as follows:

$$R \xrightarrow{C} C \xrightarrow{C} Cl + R'MgX \longrightarrow R \xrightarrow{C} C \xrightarrow{C} Cl \xrightarrow{R'} R \xrightarrow{O} R \xrightarrow{H} R \xrightarrow{O} R \xrightarrow{H} R \xrightarrow{I} R \xrightarrow{I}$$

The ketone can sometimes be isolated, but usually it reacts with a second mole of Grignard reagent to give a tertiary alcohol.

$$R \xrightarrow{O}_{R'} R \xrightarrow{O^{-}MgX}_{R'} \xrightarrow{OH}_{R'} R \xrightarrow{OH}_{R'}$$

PROBLEM 10.35 Predict the product from the reaction of phenylmagnesium bromide (C_6H_5MgBr) with benzoyl chloride (C_6H_5COCl).

Preparation of mixed anhydrides

• Mixed anhydrides

Acetic benzoic anhydride

Nucleophilic substitution of anhydrides

Amides

• Nomenclature

Amide nomenclature

Similar to carboxylic acid. Drop -oic acid ending and replace with amide

O II CH3-CH2-C-NH2 Propanamide

Benzamide

• Properties of Amides

They have exceptionally high boiling points for their molecular weights, although alkyl substitution on the nitrogen lowers the boiling and melting points by decreasing the hydrogen-bonding possibilities, as shown in the following two pairs of compounds:

Amide Resonance

Nylon

If we have a diamine and a diacid chloride, we can produce a polymer using amide bonds. Nylon is an example.

Reactions of Amides (Hydrolysis and Reduction)

$$R \xrightarrow{I}_{\text{amide}} R \xrightarrow{H}_{\text{OH}} H \xrightarrow{H' \text{ or }} R \xrightarrow{I}_{\text{acid}} H \xrightarrow{H' \text{ or }} R \xrightarrow{I}_{\text{acid}} H \xrightarrow{I}_{\text{OH}} H \xrightarrow{I}_{\text{OH}} H \xrightarrow{I}_{\text{OH}} H \xrightarrow{I}_{\text{II}} H \xrightarrow{I}_{\text{$$

The reactions are slow, and prolonged heating or acid or base catalysis is usually necessary.

PROBLEM 10.33 Using eq. 10.42 as a model, write an equation for the hydrolysis of acetamide.

Amides can be reduced by lithium aluminum hydride to give amines.

$$R = C = NH_2 \xrightarrow{\text{LiAlH}_{e}} RCH_2 NH_2$$
(10.43)
amide amine

This is an excellent way to make primary amines, whose chemistry is discussed in the next chapter.

PROBLEM 10.34 Using eq. 10.43 as a model, write an equation for the reduction of acetamide with LiAlH₄.

More examples, pheromones

Pheromones - chemicals secreated by animals alter the behavior of other members of the same species.

CH3CH2CH=CH(CH2)gCH2OCCH3

tetracecenyl acetate (european corn borer sex pheromone)