Stereochemistry

Stereochemistry:

That part of the science which deals with structure *in three dimensions*

Stereochemistry

Isomers: different compounds having the same molecular formula

Isomers – different compounds with the same molecular formula.

Structural Isomers – isomers that differ in which atoms are bonded to which atoms.

CH₃ CH₃CH₂CH₂CH₃ CH₃CHCH₃ eg. C_4H_{10} isobutane *n*-butane constitutional isomers ClCH₃CH₂CH₂CH₂Cl and CH₃CH₂CHCH₃ CH₃CH₂OH CH₃OCH₃ and 1-chlorobutane 2-chlorobutane ethanol dimethyl ether CH_3 CH₃CH₂CH CH₃CH₂CH₂CH₂CH₃ and CH₃CHCH₂CH₃ CH₃CCH₃ and propionaldehyde pentane isopentane acetone

Stereoisomers – isomers that differ in the way the atoms are oriented in space, but <u>not</u> in which atoms are bonded to which atoms.

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

A carbon which is attached to four different substituents is called a chiral carbon...and a pair of non-superimposible mirror images are called enantiomers.

...a pair of <mark>enantiomers</mark>

Organic Chemistry OnLine @2000

Chirality Center Carbon has four different groups attached

Chiral vs achiral

Organic Chemistry OnLine ©2000

NOMENCLATURE OF ENANTIOMERS: THE (*R-S*) SYSTEM

- (*R*) and (*S*) are from the Latin words rectus and sinister:
- i) *R* configuration: clockwise (rectus, "**right**")
- ii) S configuration: counterclockwise (sinister, "left")

Priority (Cahn-Ingold-Prelog) Rules

Rule 1:

Look at the atoms directly attached to the chiral carbon and assign priority based on highest atomic number (O > N > C > H)

Rule 2:

If decision can't be reached by ranking the first atoms in the substituents, look at the second, third, or fourth atoms until difference is found

<u>Rule 3</u>:

Multiple-bonded atoms are equivalent to the same number of single-bonded atoms

Organic Chemistry OnLine ©2000

Examples

R

S

R

R

S

(S)-2-bromobutane

(R)-2-bromobutane

Lactic Acid

C.I.P. Priorities

Compounds with more than one stereogenic center; (Diasteriomers)

If a molecule has n different stereogenic centers, it may exist in a maximum of 2^n stereisomeric forms. There will be a maximum of 2^n / 2pairs of enantiomers. in the above case 2 stereogenic centers, 2 pairs of enantiomers, 4 stereoisomers

1 and 2 are enantiomers, 3 and 4 are the same compound (Meso structure)

1 and 3, 2 and 3, are diastereomers

Diastereomers are non mirror image stereoisomers

1 pair of enantiomers and a total of 3 isomers

A meso compound: is an achiral (optically inactive) diastereomer of a compound with stereogenic centers. Its stereogenic centers have opposite configurations. One half of the molecule is the mirror image of the other half

Example

What is the relation between the following co

- Properties of enantiomers and diastereomers
- A) Enantiomers
- Have the same physical properties except for direction of rotation of plane polarized light
- Have the same chemical properties except for their reaction with other chiral molecules
- (This usually seen in their biological activity)
- B) Diastereomers
- Have different physical properties
- Similar chemical properties

The subscript D refers to the wavelength of light used (the sodium "D-line")

- A chiral molecule is one that is optically active
- A racemic mixture (racemic modification) is one with equal ratios of enantiomers (50:50 mixture)

- Chemical reactions of stereoisomers
- 1) Generation of a chiral center

product is optically inactive \rightarrow racemic modification

Stereochemistry of Electrophilic Addition Reactions of Alkenes

What is the absolute configuration of the product?

Addition reactions that form one asymmetric carbon

(R)-2-bromobutane

2-methyl-1-butene

1-bromo-2-methylbutane

Reaction away from a chiral center

retention of configuration

retention of configuration

Addition reactions that form two asymmetric carbons

A carbocation reaction intermediate

Two substituents added to the same side of the double bond: syn Two substituents added to opposite sides of the double bond: anti

Addition reactions that form two asymmetric carbons A radical reaction intermediate

perspective formulas of the stereoisomers of the product

Addition reactions that form a bromonium ion intermediate (anti addition)

 $C_5H_{10}CI_2 + HCI$

(S)-(-)-1-chloro-2-methylbutane

six fractions: four optically active two optically inactive

Α

No bonds to the chiral center are broken, configuration is retained. Product is optically active

A bond is broken to the chiral center. Stereochemistry depends on the mechanism. Here, the intermediate free radical is flat and a racemic modification is formed. This fraction is optically inactive.

The product no longer has a chiral center. It is achiral and optically inactive.

No bond is broken to the chiral center and a new chiral center is formed. The products are diastereomers and each fraction is optically active.

No bonds to the chiral center are broken, configuration is retained. Product is optically active

Generation of a second chiral center

Diastereomeric products at different rates and in unequal amounts

Addition reactions that form an additional asymmetric carbon

importance of stereochemistry in pharmaceutical

does not fit the enzyme's active site