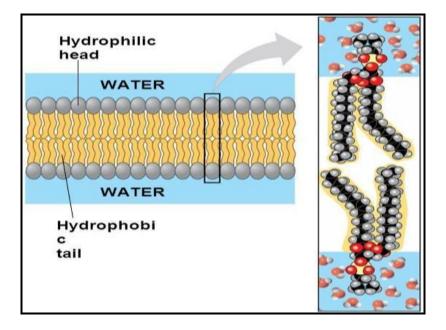
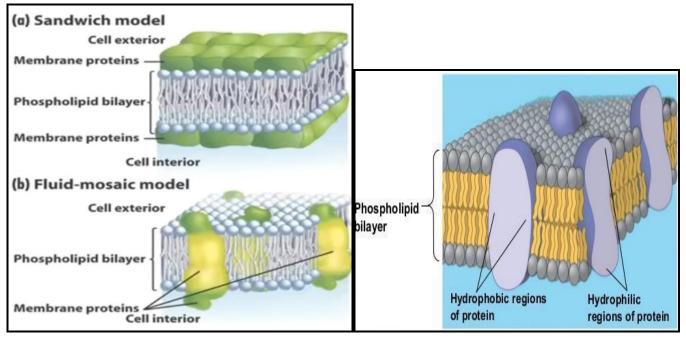
<u>Biochemistry of</u> Extracellular& Intracellular Communication

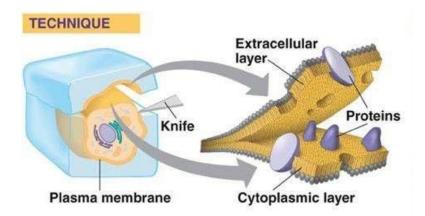
***** *Membranes: Structure & Function:*


- The plasma membrane is the boundary that separates the living cell from its surroundings
- The plasma membrane exhibits selective permeability, allowing some substances to cross it more easily than others

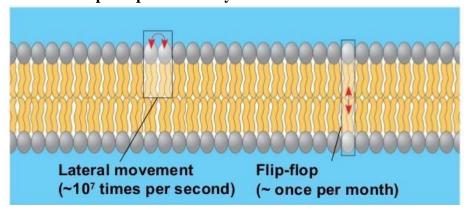
Cellular membranes are fluid mosaics of lipids and proteins:

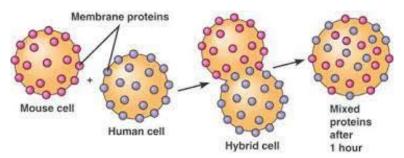

- Phospholipids are the most abundant lipid in the plasma membrane
- Phospholipids are amphipathic molecules containing hydrophobic and hydrophilic regions
- The fluid mosaic model states that a membrane is a fluid structure with a " mosaic " of various proteins embedded in it.

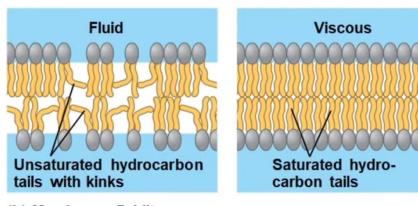
Membrane Models: Scientific Inquiry


- Membranes have been chemically analyzed and found to be made of proteins and lipids
- Scientists studying the plasma membrane reasoned that it must be a phospholipid bilayer

- In 1935, Hugh Davson and James Danielli proposed a sandwich model in which the phospholipid bilayer lies between two layers of globular proteins.
- Later studies found problems with this model ,particularly the placement of membrane proteins .which have hydrophilic and hydrophobic regions
- In 1972, J. Singer and G. Nicolson proposed that the membrane is a mosaic of proteins dispersed within the bilayer, with only the hydrophilic regions exposed to water

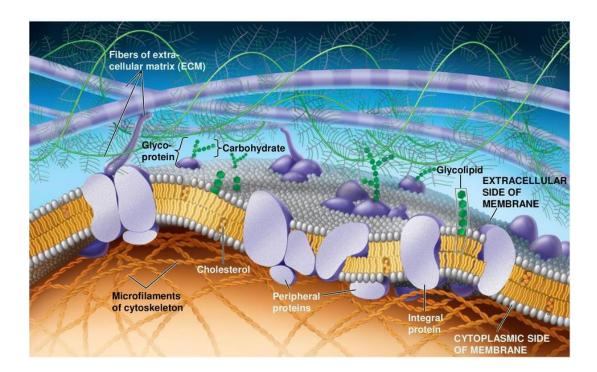



- Freeze fracture studies of the plasma membrane supported the fluid mosaic model
- Freeze fracture is a specialized preparation technique that splits a membrane along the middle of the phospholipid bilayer

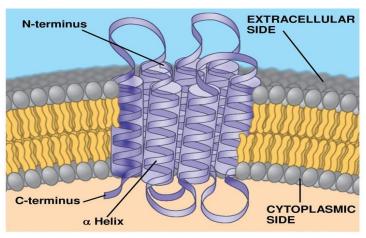

4 The Fluidity of Membranes

- Phospholipids in the plasma membrane can move within the bilayer.
- Most of the lipids, and some proteins, drift laterally
- Rarely does a molecule flip flop transversely across the membrane

- As temperatures cool, membranes switch from a fluid state to a solid state
- The temperature at which a membrane solidifies depends on the types of lipids
- Membranes rich in unsaturated fatty acids are more fluid that those rich in saturated fatty acids
- Membranes must be fluid to work properly; they are usually about as fluid as salad oil



- (b) Membrane fluidity
- The steroid cholesterol has <u>different effects</u> on membrane fluidity at different temperatures
- At warm temperatures (such as 37 ° C) , cholesterol restrains movement of phospholipids
- At cool temperatures, it maintains fluidity by preventing tight packing



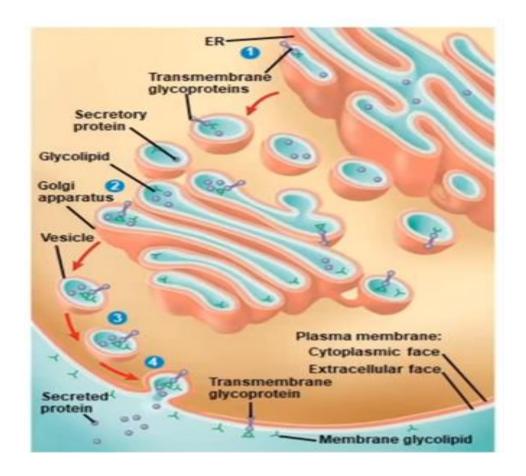
4 Membrane Proteins and their Functions

- A membrane is a collage of different proteins embedded in the fluid matrix of the lipid bilayer
- Proteins determine most of the membrane's specific functions

- Peripheral proteins are bound to the surface of the membrane
- Integral proteins penetrate the hydrophobic core
- Integral proteins that span the membrane are called trans membrane proteins
- The hydrophobic regions of an integral protein consist of one or more stretches of nonpolar amino acids, often coiled into alpha helices

Six major functions of membrane proteins:

- 1. Transport
- 2. Enzymatic activity
- 3. Signal transduction
- 4. Cell cell recognition
- 5. Intercellular joining
- 6. Attachment to the cytoskeleton and extracellular matrix (ECM)



The Role of Membrane Carbohydrates in Cell - Cell Recognition

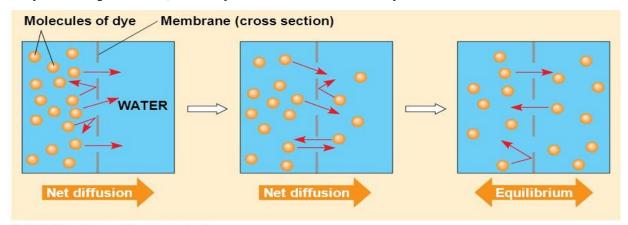
- Cells recognize each other by binding to surface molecules, often carbohydrates, on the plasma membrane
- Membrane carbohydrates may be covalently bonded to lipids (forming glycolipids) or more commonly to proteins (forming glycoproteins).
- Carbohydrates on the external side of the plasma membrane vary among species, individuals, and even cell types in an individual

Synthesis and Sidedness of Membranes

- Membranes have distinct inside and outside faces
- The asymmetrical distribution of proteins, lipids, and associated carbohydrates in the plasma membrane is determined when the membrane is built by the Endoplasmic reticulum (ER) and Golgi apparatus

Membrane structure results in selective permeability

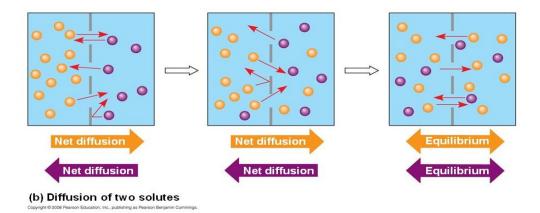
- A cell must exchange materials with its surroundings, a process controlled by the plasma membrane
- Plasma membranes are selectively permeable, regulating the cell's molecular traffic.


• The Permeability of the Lipid Bilayer

- Hydrophobic (nonpolar) molecules, such as hydrocarbons, can <u>dissolve</u> in the lipid bilayer and pass through the membrane rapidly
- Polar molecules, such as sugars, do not cross the membrane easily

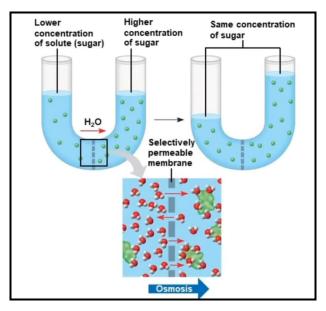
Transport Proteins

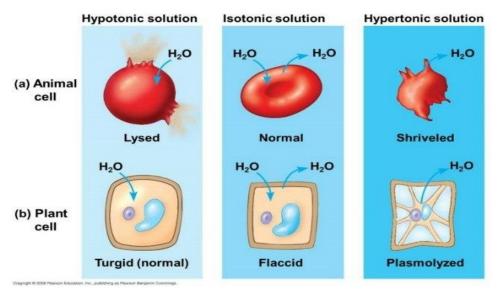
• Transport proteins allow passage of hydrophilic substances across the membrane


- Some transport proteins, called channel proteins, have a hydrophilic channel that certain molecules or ions can use as a tunnel
- Channel proteins called <u>aquaporin</u> facilitate the passage of water
- Other transport proteins, called carrier proteins, bind to molecules and change shape to shuttle them <u>across the membrane</u>
- A transport protein is specific for the substance it moves
 - 1. <u>Passive transport is diffusion of a substance across a membrane with no energy</u> investment.
 - Diffusion is the tendency for molecules to spread out evenly into the available space
 - Although each molecule moves randomly, diffusion of a population of molecules may exhibit a net movement in one direction
 - At dynamic equilibrium, as many molecules cross one way as cross in the other direction

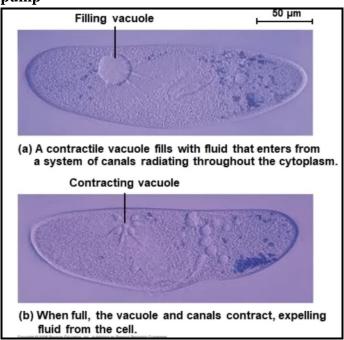
(a) Diffusion of one solute

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

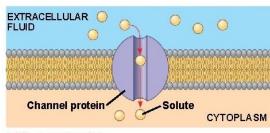

- Substances diffuse down their concentration gradient, the difference in concentration of a substance from one area to another
- No work must be done to move substances down the concentration gradient
- The diffusion of a substance across a biological membrane is passive transport because it requires no energy from the cell to make it happen


2. Effects of Osmosis on Water Balance

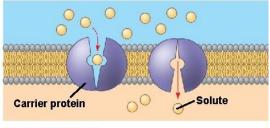
- Osmosis is the diffusion of water across a selectively permeable membrane
- Water diffuses across a membrane from the region of lower solute concentration to the region of higher solute concentration


***** Water Balance of Cells Without Walls

- Tonicity is the ability of a solution to cause a cell to gain or lose water
- Isotonic solution: Solute concentration is the same as that inside the cell; no net water movement across the plasma membrane.
- Hypertonic solution : Solute concentration is greater than that inside the cell; cell loses water
- Hypotonic solution: Solute concentration is less than that inside the cell; cell gains water

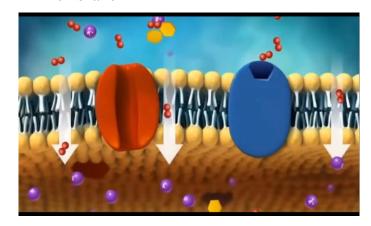

• Hypertonic or hypotonic environments create osmotic problems for organisms

- Osmoregulation, the control of water balance, is a necessary adaptation for life in such environments
- The protist Paramecium, which is hypertonic to its pond water environment, has a contractile vacuole that acts as a pump

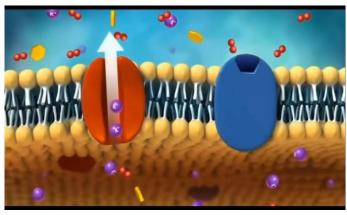


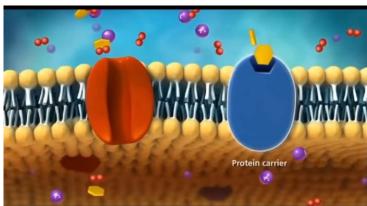
3. Facilitated Diffusion: Passive Transport Aided by Proteins

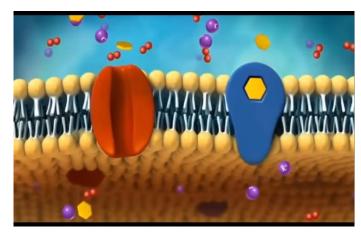
- In facilitated diffusion , transport proteins speed the passive movement of molecules across the plasma membrane
- Channel proteins provide corridors that allow a specific molecule or ion to cross the membrane
- channel proteins include:
 - **✓** Aquaporin , for facilitated diffusion of water
 - ✓ Ion channels that open or close in response to a stimulus (gated channels)



(a) A channel protein




(b) A carrier protein


• Carrier proteins undergo a subtle change in shape that translocate the solute - binding site across the membrane

